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Recall: Generalized additive model (GAM)

• Recall: A GLM has the following structure

(systematic) E(Y | x) = h(𝛽⊤x),

(random) Y | x follows an exponential family distribution.

• A generalized additive model has the following structure

(systematic) E(Y | x) = 𝛽0 +
∑︁
i

hi (xi )

(random) Y | x follows an exponential family distribution.

This defines a conditional probability model

p(y | x, 𝛽0, h1, . . . , hd)
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Reall: Roughness penalty approach for GAM

• We want to choose 𝛽0, h1, . . . , hd to maximize∑︁
i

ln p(yi | xi , 𝛽0, h1, . . . , hd)−
∑︁
j

𝜆j

∫︁
h′′j (xj)

2dxj .

• Again, if each 𝜆j > 0, then each hj must be a natural cubic spline
with knots at the unique values of xj .

• This reduces the problem to a parametric regression problem.
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Recall: Remarks

• Higher order derivatives may be used in the regularizer
(smoothness penalty).

• We can also use regression splines instead of smoothing splines to
represent hi ’s.

• hi ’s may use a mix of different representations.

e.g. h1(x1) = x1, h2(x2) a regression spline, h3(x3) a smoothing
spline...
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This Lecture

GAM using mgcv

• Model options

• Model checking
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Data

> library(rpart) # contains the kyphosis dataset

> dim(kyphosis)

[1] 81 4

> head(kyphosis)

Kyphosis Age Number Start

1 absent 71 3 5

2 absent 158 3 14

3 present 128 4 5

4 absent 2 5 1

5 absent 1 4 15

6 absent 1 2 16

Data on children who have had corrective spinal surgery.

• Kyphosis: if a kyphosis is present after the surgery.

• Age: age in month.

• Number: number of veterbrae involved.

• Start: the number of the topmost vertebra operated on.
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Pairwise scatterplots

Kyphosis
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• None of Age, Number, and Start is a good predictor on Kyphosis
alone.

• Age, Number and Start show little correlation between each other.
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mgcv overview

• R package for estimating penalized Generalized Linear models
including Generalized Additive Models and Generalized Additive
Mixed Models.

• The gam function is for fitting penalized regression splines with
automatic smoothness estimation (documentation at
goo.gl/TmaoFW).

• Smoothness selection in gam is by GCV, AIC/Mallows’ Cp, GACV,
REML or ML (see the method argument in the documentation).
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GLM via gam

> library(mgcv)

> fit.gam.glm = gam(Kyphosis ~ Age + Number + Start, data=kyphosis,

family=binomial)

> summary(fit.gam.glm)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.036934 1.449622 -1.405 0.15998

Age 0.010930 0.006447 1.696 0.08997 .

Number 0.410601 0.224870 1.826 0.06786 .

Start -0.206510 0.067700 -3.050 0.00229 **

• The gam function has essentially the same syntax as the glm

function when fitting a GLM.
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> fit.glm = glm(Kyphosis ~ Age + Number + Start, data=kyphosis,

family=binomial)

> summary(fit.glm)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.036934 1.449575 -1.405 0.15996

Age 0.010930 0.006446 1.696 0.08996 .

Number 0.410601 0.224861 1.826 0.06785 .

Start -0.206510 0.067699 -3.050 0.00229 **

• The two logistic models fitted using gam and glm are essentially the
same.
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Residual plot for the fitted logistic model
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Characteristics of residual plots for a logistic model

• Recall that x⊤𝛽 is the value of the link function g(𝜇)

• The Pearson residual for a logistic model is rP = y−𝜇√
𝜇(1−𝜇)

.

• For each link value g(𝜇), there is a negative point and a positive
point

(g ,−𝜇/
√︀
𝜇(1− 𝜇), and (g , 1− 𝜇/

√︀
𝜇(1− 𝜇),

where the two residual values have product -1.

• As g increases, the positive point is roughly (g ,
√
1− 𝜇).

• As g decreases, the negative point is roughly (g ,−√
𝜇).
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Residual plot is not quite informative for binary data...

• If the model is true...
• as g increases, the negative point becomes less common.
• as g decreases, the positive point becomes less common.

• Unless one observes quite a few positive points for small g , or quite
a few negative points for large g , then nothing is obviously wrong.

• Such abnormality is not observed for the fitted model.
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Fitting a GAM

> fit.gam = gam(Kyphosis ~ s(Age) + s(Number,k=8) + s(Start,k=16),

data=kyphosis, family=binomial)

• Syntax pretty much the same as glm.

• However, we can now specify a smoothing term using s.

• This fits a nonparametric logistic model of the form

logitP(Kyphosis | Age,Number , Start)

= 𝛽0 + h1(Age) + h2(Number) + h3(Start).
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Specifying smooth terms using s

• The k parameter specifies the number of basis functions to use.

• k = 10 by default, but need to be at most the number of unique
values (8 for Number, and 16 for Start).

• The default basis functions are a class of thin plate regression
splines.

• bs=’cr’: the basis functions are cubic regression splines with
knots spread evenly through the covariate values.

A broad class of alternative smooth terms and basis functions are
available: https://goo.gl/AJ8qgP.
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Inspecting the GAM

> summary(fit.gam)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2706 0.5015 -4.528 5.96e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(Age) 2.212 2.791 6.367 0.0768 .

s(Number) 1.193 1.358 2.577 0.1959

s(Start) 2.035 2.542 9.814 0.0144 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• The EDF (estimated degree of freedom) for Age is 2.212, so ĥ1 has
a complexity between a quadratic and a cubic polynomial.

• Similarly, ĥ2 is like a linear function, and ĥ3 is like a quadratic
polynomial.
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Checking fitted smooth terms

• plot(fit.gam, residuals=TRUE, pch=19, pages=1)
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• Dotted lines represent 95% Bayesian confidence intervals.

• Black dots are obtained by adding partial residuals to each fitted
ĥi . Systematic departure from ĥi indicates a problem.
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Checking GAM residuals
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Almost the same as the residual plot for logistic regression. Not really
useful.
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Checking basis dimension k

> summary(gam(Kyphosis ~ s(Age, k=15) + s(Number,k=8) +

s(Start,k=10), data=kyphosis, family=binomial))

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.2704 0.5014 -4.528 5.96e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value

s(Age) 2.217 2.802 6.370 0.0774 .

s(Number) 1.192 1.356 2.575 0.1957

s(Start) 2.031 2.533 9.707 0.0143 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• Already using maximum k for Number and Start.

• Increasing k for Age does not have much effect.
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Checking training set accuracy

> y = kyphosis$Kyphosis == 'present'
> max(sum(y)/length(y), 1 - sum(y)/length(y))

[1] 0.7901235

> pred.glm = predict(fit.glm, type='response') > 0.5

> sum(y == pred.glm)/length(y)

[1] 0.8395062

> pred.gam = predict(fit.gam, type='response') > 0.5

> sum(y == pred.gam)/length(y)

[1] 0.8765432

• Always predicting ’absent’ has an accuracy of 0.79.

• Nonparametric logistic model has best training set accuracy.
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What You Need to Know

GAM using mgcv

• Various model options in gam
• type of basis functions, number of basis functions, method of

estimating smoothing parameter...

• Model checking
• Residual plot not useful for binary data.
• Check things like fitted smooth terms, basis dimension, training set

accuracy to see whether something is obviously wrong/inadequate.
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