Lecture 15. Nonparametric GLMs (cont.)

Nan Ye

School of Mathematics and Physics
University of Queensland

Recall: Generalized additive model (GAM)

- Recall: A GLM has the following structure

$$
\text { (systematic) } \mathbb{E}(Y \mid \mathbf{x})=h\left(\beta^{\top} \mathbf{x}\right)
$$

(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.

- A generalized additive model has the following structure (systematic) $\mathbb{E}(Y \mid \mathbf{x})=\beta_{0}+\sum_{i} h_{i}\left(x_{i}\right)$
(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.
This defines a conditional probability model

$$
p\left(y \mid \mathbf{x}, \beta_{0}, h_{1}, \ldots, h_{d}\right)
$$

Reall: Roughness penalty approach for GAM

- We want to choose $\beta_{0}, h_{1}, \ldots, h_{d}$ to maximize

$$
\sum_{i} \ln p\left(y_{i} \mid \mathbf{x}_{i}, \beta_{0}, h_{1}, \ldots, h_{d}\right)-\sum_{j} \lambda_{j} \int h_{j}^{\prime \prime}\left(x_{j}\right)^{2} d x_{j} .
$$

- Again, if each $\lambda_{j}>0$, then each h_{j} must be a natural cubic spline with knots at the unique values of x_{j}.
- This reduces the problem to a parametric regression problem.

Recall: Remarks

- Higher order derivatives may be used in the regularizer (smoothness penalty).
- We can also use regression splines instead of smoothing splines to represent h_{i} 's.
- h_{i} 's may use a mix of different representations.
e.g. $h_{1}\left(x_{1}\right)=x_{1}, h_{2}\left(x_{2}\right)$ a regression spline, $h_{3}\left(x_{3}\right)$ a smoothing spline...

This Lecture

GAM using mgcv

- Model options
- Model checking

Data

Data on children who have had corrective spinal surgery.

- Kyphosis: if a kyphosis is present after the surgery.
- Age: age in month.
- Number: number of veterbrae involved.
- Start: the number of the topmost vertebra operated on.

Pairwise scatterplots

Start

- None of Age, Number, and Start is a good predictor on Kyphosis alone.
- Age, Number and Start show little correlation between each other.

mgcv overview

- R package for estimating penalized Generalized Linear models including Generalized Additive Models and Generalized Additive Mixed Models.
- The gam function is for fitting penalized regression splines with automatic smoothness estimation (documentation at goo.gl/TmaoFW).
- Smoothness selection in gam is by GCV, AIC/Mallows' Cp, GACV, REML or ML (see the method argument in the documentation).

GLM via gam

```
> library(mgcv)
> fit.gam.glm = gam(Kyphosis ~ Age + Number + Start, data=kyphosis,
    family=binomial)
> summary(fit.gam.glm)
Parametric coefficients:
    Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.036934 1.449622 -1.405 0.15998
```



```
Number 0.410601 0.224870 1.826 0.06786 .
Start -0.206510 0.067700 -3.050 0.00229 **
```

- The gam function has essentially the same syntax as the glm function when fitting a GLM.

```
> fit.glm = glm(Kyphosis ~ Age + Number + Start, data=kyphosis,
        family=binomial)
> summary(fit.glm)
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error & z value & \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & -2.036934 & 1.449575 & -1.405 & 0.15996 \\
Age & 0.010930 & 0.006446 & 1.696 & 0.08996. \\
Number & 0.410601 & 0.224861 & 1.826 & 0.06785. \\
Start & -0.206510 & 0.067699 & -3.050 & 0.00229 .
\end{tabular}
```

- The two logistic models fitted using gam and glm are essentially the same.

Residual plot for the fitted logistic model

Is this plot useful?

Characteristics of residual plots for a logistic model

- Recall that $\mathbf{x}^{\top} \beta$ is the value of the link function $g(\mu)$
- The Pearson residual for a logistic model is $r_{P}=\frac{y-\mu}{\sqrt{\mu(1-\mu)}}$.
- For each link value $g(\mu)$, there is a negative point and a positive point

$$
(g,-\mu / \sqrt{\mu(1-\mu}), \text { and }(g, 1-\mu / \sqrt{\mu(1-\mu})
$$

where the two residual values have product -1 .

- As g increases, the positive point is roughly $(g, \sqrt{1-\mu})$.
- As g decreases, the negative point is roughly $(g,-\sqrt{\mu})$.

Residual plot is not quite informative for binary data...

- If the model is true...
- as g increases, the negative point becomes less common.
- as g decreases, the positive point becomes less common.
- Unless one observes quite a few positive points for small g, or quite a few negative points for large g, then nothing is obviously wrong.
- Such abnormality is not observed for the fitted model.

Fitting a GAM

$>$ fit.gam $=$ gam (Kyphosis $\sim s($ Age $)+s($ Number, $k=8)+s($ Start, $k=16)$, data=kyphosis, family=binomial)

- Syntax pretty much the same as glm.
- However, we can now specify a smoothing term using s.
- This fits a nonparametric logistic model of the form

$$
\begin{aligned}
& \text { logit } P(\text { Kyphosis } \mid \text { Age, Number, Start }) \\
= & \beta_{0}+h_{1}(\text { Age })+h_{2}(\text { Number })+h_{3}(\text { Start }) .
\end{aligned}
$$

Specifying smooth terms using s

- The k parameter specifies the number of basis functions to use.
- $k=10$ by default, but need to be at most the number of unique values (8 for Number, and 16 for Start).
- The default basis functions are a class of thin plate regression splines.
- bs='cr': the basis functions are cubic regression splines with knots spread evenly through the covariate values.
A broad class of alternative smooth terms and basis functions are available: https://goo.gl/AJ8qgP.

Inspecting the GAM

```
    summary(fit.gam)
Parametric coefficients:
    Estimate Std. Error z value Pr}(>|z|
(Intercept) -2.2706 0.5015 -4.528 5.96e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Approximate significance of smooth terms:
    edf Ref.df Chi.sq p-value
s(Age) 2.212 2.791 6.367 0.0768 .
s(Number) 1.193 1.358
s(Start) 2.035 2.542 9.814 0.0144 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

- The EDF (estimated degree of freedom) for Age is 2.212 , so \hat{h}_{1} has a complexity between a quadratic and a cubic polynomial.
- Similarly, \hat{h}_{2} is like a linear function, and \hat{h}_{3} is like a quadratic polynomial.

Checking fitted smooth terms

- plot(fit.gam, residuals=TRUE, pch=19, pages=1)

- Dotted lines represent 95\% Bayesian confidence intervals.
- Black dots are obtained by adding partial residuals to each fitted \hat{h}_{i}. Systematic departure from \hat{h}_{i} indicates a problem.

Checking GAM residuals

Almost the same as the residual plot for logistic regression. Not really useful.

Checking basis dimension k

```
> summary(gam(Kyphosis ~ s(Age, k=15) + s(Number,k=8) +
    s(Start,k=10), data=kyphosis, family=binomial))
Parametric coefficients:
    Estimate Std. Error z value Pr}(>|z|
(Intercept) -2.2704 0.5014 -4.528 5.96e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Approximate significance of smooth terms:
                                    edf Ref.df Chi.sq p-value
s(Age) 2.217 2.802 6.370 0.0774.
s(Number) 1.192 1.356 2.575 0.1957
s(Start) 2.031 2.533 9.707 0.0143 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

- Already using maximum k for Number and Start.
- Increasing k for Age does not have much effect.

Checking training set accuracy

> y = kyphosis\$Kyphosis == 'present'
$>\max (\operatorname{sum}(y) /$ length $(y), 1-\operatorname{sum}(y) / l e n g t h(y))$
[1] 0.7901235
> pred.glm = predict(fit.glm, type='response') > 0.5
> sum(y == pred.glm)/length(y)
[1] 0.8395062
> pred.gam = predict(fit.gam, type='response') > 0.5
> sum(y == pred.gam)/length(y)
[1] 0.8765432

- Always predicting 'absent' has an accuracy of 0.79.
- Nonparametric logistic model has best training set accuracy.

What You Need to Know

GAM using mgcv

- Various model options in gam
- type of basis functions, number of basis functions, method of estimating smoothing parameter...
- Model checking
- Residual plot not useful for binary data.
- Check things like fitted smooth terms, basis dimension, training set accuracy to see whether something is obviously wrong/inadequate.

