Lecture 15. Nonparametric GLMs (cont.)

Nan Ye

School of Mathematics and Physics University of Queensland

Recall: Generalized additive model (GAM)

• Recall: A GLM has the following structure

(systematic) $\mathbb{E}(Y \mid \mathbf{x}) = h(\beta^{\top}\mathbf{x}),$

(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.

• A generalized additive model has the following structure

(systematic)
$$\mathbb{E}(Y \mid \mathbf{x}) = \beta_0 + \sum_i h_i(x_i)$$

(random) $Y \mid \mathbf{x}$ follows an exponential family distribution.

This defines a conditional probability model

$$p(y \mid \mathbf{x}, \beta_0, h_1, \ldots, h_d)$$

Reall: Roughness penalty approach for GAM

• We want to choose β_0 , h_1, \ldots, h_d to maximize

$$\sum_{i} \ln p(y_i \mid \mathbf{x}_i, \beta_0, h_1, \dots, h_d) - \sum_{j} \lambda_j \int h_j''(x_j)^2 dx_j.$$

- Again, if each λ_j > 0, then each h_j must be a natural cubic spline with knots at the unique values of x_j.
- This reduces the problem to a parametric regression problem.

Recall: Remarks

- Higher order derivatives may be used in the regularizer (smoothness penalty).
- We can also use regression splines instead of smoothing splines to represent *h_i*'s.
- *h_i*'s may use a mix of different representations.

e.g. $h_1(x_1) = x_1$, $h_2(x_2)$ a regression spline, $h_3(x_3)$ a smoothing spline...

This Lecture

GAM using mgcv

- Model options
- Model checking

Data

6

> library(rpart) # contains the kyphosis dataset > dim(kyphosis) [1] 81 4 > head(kyphosis) Kyphosis Age Number Start absent 71 3 5 1 3 14 2 absent 158 3 present 128 4 5 4 absent 2 5 1 5 absent 1 4 15

Data on children who have had corrective spinal surgery.

16

- Kyphosis: if a kyphosis is present after the surgery.
- Age: age in month.

absent 1

• Number: number of veterbrae involved.

2

• Start: the number of the topmost vertebra operated on.

Pairwise scatterplots

- None of Age, Number, and Start is a good predictor on Kyphosis alone.
- Age, Number and Start show little correlation between each other.

mgcv overview

- R package for estimating penalized Generalized Linear models including Generalized Additive Models and Generalized Additive Mixed Models.
- The gam function is for fitting penalized regression splines with automatic smoothness estimation (documentation at goo.gl/TmaoFW).
- Smoothness selection in gam is by GCV, AIC/Mallows' Cp, GACV, REML or ML (see the method argument in the documentation).

GLM via gam

> library(mgcv)						
<pre>> fit.gam.glm = gam(Kyphosis ~ Age + Number + Start, data=kyphosis,</pre>						
family=binomial)						
> summary(fit.gam.glm)						
Parametric coefficients:						
Estimate Std. Error z value Pr(> z)						
(Intercept)	-2.036934	1.449622	-1.405	0.15998		
Age	0.010930	0.006447	1.696	0.08997		
Number	0.410601	0.224870	1.826	0.06786		
Start	-0.206510	0.067700	-3.050	0.00229	**	

• The gam function has essentially the same syntax as the glm function when fitting a GLM.

0.410601 0.224861 1.826 0.06785 .

-0.206510 0.067699 -3.050 0.00229 **

Number

Start

• The two logistic models fitted using gam and glm are essentially the same.

Residual plot for the fitted logistic model

Is this plot useful?

Characteristics of residual plots for a logistic model

- Recall that $\mathbf{x}^{\top}\beta$ is the value of the link function $g(\mu)$
- The Pearson residual for a logistic model is $r_P = \frac{y-\mu}{\sqrt{\mu(1-\mu)}}$.
- For each link value g(µ), there is a negative point and a positive point

$$(g,-\mu/\sqrt{\mu(1-\mu)}), ext{ and } (g,1-\mu/\sqrt{\mu(1-\mu)}),$$

where the two residual values have product -1.

- As g increases, the positive point is roughly $(g, \sqrt{1-\mu})$.
- As g decreases, the negative point is roughly $(g, -\sqrt{\mu})$.

Residual plot is not quite informative for binary data...

- If the model is true...
 - as g increases, the negative point becomes less common.
 - as g decreases, the positive point becomes less common.
- Unless one observes quite a few positive points for small g, or quite a few negative points for large g, then nothing is obviously wrong.
 - Such abnormality is not observed for the fitted model.

Fitting a GAM

- - Syntax pretty much the same as glm.
 - However, we can now specify a smoothing term using s.
 - This fits a nonparametric logistic model of the form

logit P(Kyphosis | Age, Number, Start)= $\beta_0 + h_1(Age) + h_2(Number) + h_3(Start).$

Specifying smooth terms using s

- The *k* parameter specifies the number of basis functions to use.
- k = 10 by default, but need to be at most the number of unique values (8 for Number, and 16 for Start).
- The default basis functions are a class of thin plate regression splines.
- bs='cr': the basis functions are cubic regression splines with knots spread evenly through the covariate values.

A broad class of alternative smooth terms and basis functions are available: https://goo.gl/AJ8qgP.

Inspecting the GAM

```
> summary(fit.gam)
Parametric coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.2706 0.5015 -4.528 5.96e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Approximate significance of smooth terms:
                 edf Ref.df Chi.sq p-value
s(Age) 2.212 2.791 6.367 0.0768.
s(Number) 1.193 1.358 2.577 0.1959
s(Start) 2.035 2.542 9.814 0.0144 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

- The EDF (estimated degree of freedom) for Age is 2.212, so \hat{h}_1 has a complexity between a quadratic and a cubic polynomial.
- Similarly, \hat{h}_2 is like a linear function, and \hat{h}_3 is like a quadratic polynomial.

Checking fitted smooth terms

• plot(fit.gam, residuals=TRUE, pch=19, pages=1)

- Dotted lines represent 95% Bayesian confidence intervals.
- Black dots are obtained by adding partial residuals to each fitted \hat{h}_i . Systematic departure from \hat{h}_i indicates a problem.

Checking GAM residuals

Almost the same as the residual plot for logistic regression. Not really useful.

Checking basis dimension k

```
> summary(gam(Kyphosis ~ s(Age, k=15) + s(Number,k=8) +
 s(Start,k=10), data=kyphosis, family=binomial))
Parametric coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.2704 0.5014 -4.528 5.96e-06 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Approximate significance of smooth terms:
                 edf Ref.df Chi.sq p-value
s(Age) 2.217 2.802 6.370 0.0774.
s(Number) 1.192 1.356 2.575 0.1957
s(Start) 2.031 2.533 9.707 0.0143 *
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```

- Already using maximum k for Number and Start.
- Increasing k for Age does not have much effect.

Checking training set accuracy

```
> y = kyphosis$Kyphosis == 'present'
> max(sum(y)/length(y), 1 - sum(y)/length(y))
[1] 0.7901235
> pred.glm = predict(fit.glm, type='response') > 0.5
> sum(y == pred.glm)/length(y)
[1] 0.8395062
> pred.gam = predict(fit.gam, type='response') > 0.5
> sum(y == pred.gam)/length(y)
[1] 0.8765432
```

- Always predicting 'absent' has an accuracy of 0.79.
- Nonparametric logistic model has best training set accuracy.

What You Need to Know

GAM using mgcv

- Various model options in gam
 - type of basis functions, number of basis functions, method of estimating smoothing parameter...
- Model checking
 - Residual plot not useful for binary data.
 - Check things like fitted smooth terms, basis dimension, training set accuracy to see whether something is obviously wrong/inadequate.