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Recall: Extending GLMs

GLMs
Quasi-likelihood

models

Nonparametric
models

Mixed/marginal
models

(a)

(b)

(c)

(a) Relax assumption on the random component.

(b) Relax assumption on the systematic component.

(c) Relax assumption on the data (independence).
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Correlated Data

So far...

• We have been working under the assumption that the responses are
independent given the covariates.

• This assumption does not hold for many problems.

Examples of correlated responses

• Measurements on clusters of subjects
• e.g. measurements on patients from the same hospital may be

correlated because they are attended by the same set of nurses and
doctors, and they are likely to share demographic or socio-economic
features.

• Repeated measurements on same subject
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This Lecture

Linear mixed model

• Random intercept model

• Modelling consideration: random effects versus fixed effects

• Random intercept and slope model

Generalized linear mixed model
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Random Intercept Model

Model definition

• The random intercept model assumes that each cluster/block
affect the responses via cluster-specific intercept terms only.

• The model has the form

Yij = x⊤ij 𝛽 + 𝛼i + 𝜖ij ,

𝜖ij
ind∼ N(0, 𝜎2), independent of

𝛼i
ind∼ N(0, 𝜎2

A),

where Yij and xij are the response and covariate vector for the j-th
example in cluster i , 𝛼i is a random intercept associated with
cluster i , and 𝜖ij is a Gaussian noise.
As usual, xij contains a dummy variable of value 1 corresponding to the intercept term.
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Remarks

• The model is called a mixed model because it contains a fixed
effect component x⊤ij 𝛽, and a random effect component 𝛼i .

• When 𝜎2
A = 0, the model reduces to a fixed effects only linear

model model with no intra-cluster correlation.

• When 𝜎2
A → ∞, some people consider this as a fixed effects linear

model where each cluster has its own fixed 𝛼i .
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Conditional probability p(Y | X, 𝛽, 𝜎2, 𝜎2
A)

• Assume that there are K clusters, and cluster i has nj examples.

• Let Y = (Y11, . . . ,Y1n1 , . . . ,YK1, . . . ,YKnK ).

• Let X be the design matrix with x11, . . . , x1n1 , . . . , xK1, . . . , xKnK as
rows.

• The random intercept model defines a conditional distribution of
p(Y | X, 𝛽, 𝜎2, 𝜎2

A).

• This can be shown to be a multivariate normal distribution
N(𝜇,Σ).
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• The mean is given by 𝜇 = X𝛽 as

E(Yij) = x⊤ij 𝛽,

• The covariance matrix Σ is given by

Σij ,i ′j ′ = cov(Yij ,Yi ′j ′) =

⎧⎪⎨⎪⎩
𝜎2
A + 𝜎2, i = i ′, j = j ′,

𝜎2
A, i = i ′, j ̸= j ′

0, otherwise.
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Parameter Estimation

• We can choose 𝛽 by maximizing the likelihood p(Y | X, 𝛽, 𝜎2, 𝜎2
A).

• The covariance matrix can be first estimatd using the method of
restricted maximum likelihood (REML, a.k.a. residual or reduced
maximum likelihood).

• The idea is to transform the dataset so that the likelihood function
of the transformed dataset depends only on Σ, but not on 𝛽.

• Once Σ is estimated, we can then estimate 𝛽 by solving a
regularized least squares problem.

(Details not covered in this course.)
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Fixed Effect versus Random Effect

• We can also consider cluster-specific intercepts as fixed effects.

• The model has the form

Yij = x⊤ij 𝛽 + 𝛼i + 𝜖ij ,

𝜖ij
ind∼ N(0, 𝜎2).

• This is equivalent to adding the cluster number as a factor
covariate.

10 / 23



• If we are interested in the particular clusters in the study, we should
treat 𝛼i ’s as fixed effects.

• If we are not interested in the particular clusters in the study, we
should treat 𝛼i ’s as random effects.

• As a practical consideration, if there are two few samples within
each cluster, we treat 𝛼i ’s as random effects because they cannot
be reliably estimated.
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Random Intercept and Slope Model

• In general, clusters may affect the responses not only through the
cluster-specific intercept terms, but through interactions with
certain covariates.

• The general linear mixed model has the following form

Yij = x⊤ij 𝛽 + z⊤ij 𝛼i + 𝜖ij ,

𝜖ij
ind∼ N(0, 𝜎2), independent of

𝛼i
ind∼ N(0,ΣA)

zij contains a dummy variable of value 1 corresponding to the intercept term.
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Remarks

• zij may contain a subset of covariates in xij .

• As in the random intercepts model, Y follows a multivariate normal
distribution.
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Generalized Linear Mixed Model

(GLMM)

• Recall: A GLM has the following structure

(systematic) E(Y | x) = h(𝛽⊤x),

(random) Y | x follows an exponential family distribution.

• A generalized linear mixed model has the following structure

E(Yij | xij , zij , 𝛼i ) = h(x⊤ij 𝛽 + z⊤ij 𝛼i ),

Yij | xij , zij , 𝛼i ∼ an exponential family distribution,

𝛼j
ind∼ N(0,ΣA).
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Example

Data

> library(lme4)

> dim(sleepstudy)

[1] 180 3

> head(sleepstudy)

Reaction Days Subject

1 249.5600 0 308

2 258.7047 1 308

3 250.8006 2 308

4 321.4398 3 308

5 356.8519 4 308

6 414.6901 5 308

• 18 subjects (long-distance drivers), normal sleep hours before day
0, but 3 hours sleep for next 10 days.

• Reaction time for a series of test from day 0 to day 9 recorded.
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Reaction times vs. days of sleep deprivation for 18 subjects
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We consider the following linear mixed model with a random intercept
and a random slope

Yij = 𝛽0 + 𝛽1 * dayij + 𝛼i0 + 𝛼i1 * dayij + 𝜖ij ,

𝜖ij
iid∼ N(0, 𝜎2), independent of(︂

𝛼i0

𝛼i1

)︂
iid∼ N

(︂(︂
0
0

)︂
,

(︂
𝜎2
A0 𝜌𝜎A0𝜎A1

𝜌𝜎A0𝜎A1 𝜎2
A1

)︂)︂
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fit.lmm = lmer(Reaction ~ Days + (Days | Subject),

data=sleepstudy)

• The term (Days | Subject) is a random effect term.

• It introduces a term z⊤ij 𝛼i in the linear mixed model.

• The cluster index i is the Subject value.

• zij contains the Days covariate, and an dummy variable of value 1.
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Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 612.09 24.740

Days 35.07 5.922 0.07

Residual 654.94 25.592

Number of obs: 180, groups: Subject, 18

Fixed effects:

Estimate Std. Error t value

(Intercept) 251.405 6.825 36.838

Days 10.467 1.546 6.771

Correlation of Fixed Effects:

(Intr)

Days -0.138
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Estimated fixed effects parameters

𝛽0 = 251.405ms,

𝛽1 = 10.467ms/day.

Estimated variance parameters

�̂�2
A0 = 612.09,

�̂�2
A1 = 35.07,

𝜌 = 0.07.
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• Baseline reaction times: normally distributed with mean estimated
to be 251.405ms and standard deviation estimated to be√
612.09 = 24.74 ms.

• Increase in reaction times for each additional day of sleep
derivation: normally distributed with mean estimated to be
10.467ms/day and standard deviation estimated to be√
35.07 = 5.92ms/day.

• Correlation between a subject’s intercept and slope is estimated to
be 0.07. It appears that a subject’s response to sleep deprivation is
not related much at all to their inherent reaction ability.
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Simplified model?

> fit0 = lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy)

> anova(fit0, fit.lmm)

refitting model(s) with ML (instead of REML)

Data: sleepstudy

Models:

fit0: Reaction ~ Days + (1 | Subject)

fit.lmm: Reaction ~ Days + (Days | Subject)

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)

fit0 4 1802.1 1814.8 -897.04 1794.1

fit.lmm 6 1763.9 1783.1 -875.97 1751.9 42.139 2 7.072e-10

***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

• The 𝜒2 test is approximate but the computed p-value is generally
conservative (bigger than correct p-value).

• Thus we cannot drop the random slope to simplify the model to a
random intercept model.
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What You Need to Know

• In many occasions, responses are correlated due to some form of
clustering.

• Random intercept model models the effect of clustering using
cluster-specific intercepts.

• Random intercept and slope model extends random intercept model
by allowing interaction between clusters and some covariates.

• Generalized linear mixed model generalizes linear mixed model by
allowing the response to follow an exponential family distribution.
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