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Recall: Extending GLMs

GLMs
Quasi-likelihood

models

Nonparametric
models

Mixed/marginal
models

(a)

(b)

(c)

(a) Relax assumption on the random component.

(b) Relax assumption on the systematic component.

(c) Relax assumption on the data (independence).

4 / 28



Recall: Correlated Data

So far...

• We have been working under the assumption that the responses are
independent given the covariates.

• This assumption does not hold for many problems.

Examples of correlated responses

• Measurements on clusters of subjects
• e.g. measurements on patients from the same hospital may be

correlated because they are attended by the same set of nurses and
doctors, and they are likely to share demographic or socio-economic
features.

• Repeated measurements on same subject
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Recall: mixed models

A generalized linear mixed model has the following structure

E(Yij | xij , zij , 𝛼i ) = h(x⊤ij 𝛽 + z⊤ij 𝛼i ),

Yij | xij , zij , 𝛼i ∼ an exponential family distribution,

𝛼j
ind∼ N(0,ΣA).

What if we are policy makers responsible for controlling what xij
should be for the whole population?
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If we are policy makers...

• We will be mainly concerned with how Yij ’s depend on xij for the
population.

• However, we need to take correlation between the responses into
account when building such a model.

• This leads to the class of marginal models.
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This Lecture

Marginal models for correlated data

• Model structure and examples

• Comparison with mixed models

• More on specifying association structures

• Parameter estimation

• Example
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Structure of Marginal Models

• Recall: A GLM has the following structure

(systematic) E(Y | x) = h(𝛽⊤x),

(random) Y | x follows an exponential family distribution.

• A marginal model has the following structure

(systematic) 𝜇ij = E(Yij | xij) = h(𝛽⊤xij),

(random) var(Yij | xij) = 𝜑V (𝜇ij)

association(Yij ,Yij ′) = C (𝜇ij , 𝜇ij ′ , 𝛾),

where C is a function, and 𝛾 is called an association parameter.

• 𝛽 is often estimated using the generalized estimating equation.
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Remarks

• The first two components of a marginal model have the same form
as a quasi-likelihood model.

• The association component usually measures the correlation for
continuous random variables, but in general this just needs to be
some numerical measures reflecting how responses correlate with
each other.

• We assume that responses from different clusters are uncorrelated.

• The generalized estimating equation is a generalization of
quasi-score equation (more on this later).
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Example 1. Continuous longitudinal data

• Assume we have K subjects, and we measure a continuous
response of subject i at time ti1, . . . , tini .

• A marginal model for such data may have the following structure

𝜇ij = E(Yij | xij) = 𝛽⊤xij ,

var(Yij | xij) = 𝜑,

corr(Yij ,Yij ′) = 𝛾tij−tij′ ,

where 0 ≤ 𝛾 ≤ 1.

• That is, we assume an identity link and a constant variance for
each Yij , and we assume that Yij and Yij ′ are less correlated if they
are further apart in time.
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Example 2. Clustered count data

• Assume we have K subjects, and there are ni measurements on a
count response for subject i .

• A marginal model for such data may have the following structure

𝜇ij = E(Yij | xij) = exp(𝛽⊤xij),

var(Yij | xij) = 𝜑𝜇ij

corr(Yij ,Yij ′) = 𝛾jj ′ ,

where −1 ≤ 𝛾jj ′ ≤ 1.

• That is, we assume a log-link, a linear variance, and a completely
unstructured association.
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Example 3. Clustered binary data

• Assume we have K subjects, and there are ni measurements on a
binary response for subject i .

• A marginal model for such data may have the following structure

𝜇ij = E(Yij | xij) = logistic(𝛽⊤xij),

var(Yij | xij) = 𝜑𝜇ij(1− 𝜇ij)

lnOR(Yij ,Yij ′) = 𝛾jj ′ ,

where the odds ratio is defined as
OR(Yij ,Yij ′) =

P(Yij=1,Yij′=1)P(Yij=0,Yij′=1)

P(Yij=1,Yij′=0)P(Yij=0,Yij′=0) , and −∞ ≤ 𝛾jj ′ ≤ ∞.

• That is, we assume a log-link, a linear variance, and a completely
unstructured association.
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Marginal models vs. mixed models

• Mixed models are subject-specific models
• They are used to answer questions about what we can do for

individuals or clusters.
• Correlation is modelled by modifying the systematic component of

GLMs by adding a subject-specific (or cluster-specific) term to the
linear predictor.

• Marginal model are population-averaged models
• They are used to answer questions about what we can do for the

population.
• Correlation is modelled by introducing a component to capture

within-cluster correlation.
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Some Association Structures

Independence correlation

• This is used when there is no correlation within the clusters.

• The correlation matrix is the identity matrix.

• Example correlation matrix for Y11, Y12, Y13⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠
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Exchangeable correlation

• This is used when the within cluster correlation is constant.

• Example correlation matrix for Y11, Y12, Y13⎛⎝1 𝜌 𝜌
𝜌 1 𝜌
𝜌 𝜌 1

⎞⎠
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Autoregressive correlation

• This is used when the within cluster responses are assumed to be a
time series, or more precisely, an autoregressive process.

• In an autoregressive process of order m (AR(m)), the next response
is a linear combination of previous m responses and a white noise.

• For AR(1), if Y11, Y12, Y13 are responses taken at three
consecutive time steps, then the correlation matrix has the form⎛⎝ 1 𝜌 𝜌2

𝜌 1 𝜌
𝜌2 𝜌 1

⎞⎠ ,

that is, corr(Y1j ,Y1j ′) = 𝜌|j−j ′|.
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Parameter Estimation

Revisiting parameter estimation for quasi-models

• Recall: for GLM and quasi-likelihood model, an estimate of 𝛽 is
obtained by solving ∑︁

i

yi − 𝜇i

g ′(𝜇i )Vi
xi = 0,

where 𝜇i (𝛽) = E(Yi | xi , 𝛽), and Vi = var(Yi | xi , 𝛽).
• We can show that ∇𝜇i (𝛽) = xi/g

′(𝜇i ), thus the above equation
can be written as ∑︁

i

yi − 𝜇i

Vi
∇𝜇i (𝛽) = 0.
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• We can further write the equation in matrix notation as(︂
𝜕𝜇

𝜕𝛽

)︂⊤
V−1(y − 𝜇) = 0,

where 𝜇 = (𝜇1, . . . , 𝜇n),
𝜕𝜇
𝜕𝛽 is the Jacobian of 𝜇 ( ∇𝜇i (𝛽) is the

i-th row of the Jacobian), and V = diag(V1, . . . ,Vn) is the
covariance matrix.

• This can be applied to marginal models by simply replacing V
using the covariance matrix of marginal models!
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Generalized Estimating Equation (GEE)

• The GEE for a marginal model is

∑︁
i

(︂
𝜕𝜇i

𝜕𝛽

)︂⊤
V−1(yi − 𝜇i ) = 0,

where 𝜇i = (𝜇i1, . . . , 𝜇ini ), yi = (yi1, . . . , yini ), and
Vi = diag(Vi1, . . . ,Vini )

1/2 corr(yi ) diag(Vi1, . . . ,Vini )
1/2 are the

vector of means, the vector of responses, and the covariance matrix
for cluster i respectively.

• The GEE can be solved by iterating between a modified Fisher
scoring algorithm for solving 𝛽 given Vi ’s, and estimating Vi ’s
using the residuals for given 𝛽.
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Properties

• When the correlation matrix is chosen to be an identity matrix, the
GEE reduces to the quasi-score equation for the corresponding
quasi-model (marginal model with the association component
removed).

• If the data actually satisfies E(Yij | xij) = x⊤ij 𝛽
* for some 𝛽*, then

under certain regularity conditions, the estimate 𝛽 given K clusters
is asymptotically normally distributed with mean 𝛽* and covariance
V*/K , where V* depends on both the true covariance and the
assumed covariance.

• The GEE approach usually yields similar 𝛽 as the corresponding
quasi-model, but is able to adjust the standard errors using the
empirical covariance so as to provide more accurate estimates for
the standard errors.
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Example

Data

> library(gee)

> dim(warpbreaks)

[1] 54 3

> head(warpbreaks)

breaks wool tension

1 26 A L

2 30 A L

3 54 A L

4 25 A L

5 70 A L

6 52 A L

• The data records the number of warp breaks per loom (a fixed length of yarn).

• Three levels of tension (L, M, H) and two different types of wool (A and B).

• We want to see how tension affects the number of breaks.
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Quasi-Poisson regression

> fit.po = glm(breaks ~ tension, data=warpbreaks,

family=quasipoisson)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.59426 0.08382 42.881 < 2e-16 ***

tensionM -0.32132 0.12928 -2.485 0.016260 *

tensionH -0.51849 0.13721 -3.779 0.000414 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Marginal Poisson model with independence correlation

> fit.po.ex = gee(breaks ~ tension, id=wool, data=warpbreaks,

family=poisson, corstr="independence")

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 3.5942635 0.08382008 42.880698 0.15869419 22.648992

tensionM -0.3213204 0.12928272 -2.485409 0.22270597 -1.442801

tensionH -0.5184885 0.13720625 -3.778898 0.06441329 -8.049403

Estimated Scale Parameter: 4.601903

Number of Iterations: 1

• We use independence correlation structure, and thus the marginal
model should be the same as quasi-Poisson.

• Indeed, we recover the same estimates for the coefficients, and the
naive S.E. and naive z are the same as those given by the
quasi-model.

• The robust S.E. and robust z from gee are quite different though.
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Marginal Poisson model with exchangeable correlation

> fit.po.ex = gee(breaks ~ tension, id=wool, data=warpbreaks,

family=poisson, corstr="exchangeable")

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 3.5942635 0.09055356 39.692126 0.15869419 22.648992

tensionM -0.3213204 0.12808197 -2.508709 0.22270597 -1.442801

tensionH -0.5184885 0.13619100 -3.807069 0.06441329 -8.049403

Estimated Scale Parameter: 4.601903

Number of Iterations: 1

• It may be more realistic to assume the presence of within cluster
correlation.

• With an exchangeable correlation structure, we get different naive
S.E. values but the same parameter estimates and robust S.E.
values.
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Marginal Poisson model with AR(1) correlation

> fit.po.arm = gee(breaks ~ tension, id=wool, data=warpbreaks,

family=poisson, corstr="AR-M", Mv=1)

> summary(fit.po.arm)

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 3.5949833 0.08689454 41.371797 0.15918021 22.584360

tensionM -0.3245601 0.13381637 -2.425414 0.22496947 -1.442685

tensionH -0.5178782 0.14221001 -3.641644 0.06567149 -7.885892

Estimated Scale Parameter: 4.601424

Number of Iterations: 2

• If the measurements are taken in consecutive time steps within the
same group, an autoregressive correlation structure can be more
appropriate.

• We get slightly different parameter estimates and robust S.E.
values.

26 / 28



• We get similar parameter estimates using different correlation
structures.

• Naive S.E. values change quite significantly in some cases, but
robust S.E. values are quite similar using different correlation
structures.
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What You Need to Know

Marginal models for correlated data

• Marginal model extends quasi-model with a correlation structure.

• Marginal models are population-averaged, but mixed models are
subject-specific.

• Some common association structures.

• Parameter estimation using GEE and robust standard errors.
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