Lecture 18. Time Series

Nan Ye

School of Mathematics and Physics
University of Queensland
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Johnson & Johnson quarterly earnings per share (1960-I to 1984-1V)
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Global Temperature Deviations
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Yearly average global temperature (1880-2009)
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NYSE Returns
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Returns from NYSE from 2 Feb 1984 to 31 Dec 1991.
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This Lecture

Nature of time series data
Time series modelling
Time series decomposition
Stationarity

Time domain models
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Nature of Time Series Data

Characteristics

e A time series is often viewed as a collection of random variables
{Xt} indexed by time.

e |n a time series, measurements at adjacent time points are usually
correlated.

e As compared to other types of correlated data, such as clustered or
longitudinal data, observations in a time series may explicitly
depend on previous observations and/or errors.
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Probabilistic description

e We can describe a time series using the distribution of the random
variables {X;}.

e Frequently, we look at some summary statistics

Mean function pux(t) = E(X:)
Autocovariance function ~yx(s, t) = cov(Xs, Xt)
) PYX(Sa t)

\/VX(Sv S)VX(tv t) ‘

e We often drop X from px, vx and px when there is no ambiguity.

Autocorrelation function (ACF) px(s,t
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Time Series Modelling

Chasing after stationarity

e The objective of time series modelling is to develop compact
representation of the time series, to facilitate tasks including
interpretation, prediction, control, hypothesis testing and
simulation.

e Some form of time invariance is required to find regularity in data
and extrapolate into future.

e Stationarity is a basic form of time invariance, and much of time
series modelling is about transforming times series so that the
transformed time series is stationary.
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Exploratory data analysis
e Plotting the time series should be the first step before any formal
modelling attempt.

e This is useful for identifying important features for choosing an
appropriate model.

e For example, use the plots to look for the trends, presence of
seasonal components or outliers.
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Modelling paradigms

e There are two main modelling paradigms.

e The time domain approach views a time series as the description of
the evolution of an entity, and focuses on capturing the
dependence of current value on history.

e The frequency domain approach views a time series as the
superposition (addition) of periodic variations.
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Time Series Decomposition

An additive decomposition

e A classical decomposition of a time series {X;} is
Xe=Ti+ 5t + E,

where T; is the trend component, S; is the seasonal component
(recurring variation with fixed period), E; is the error component.

e The trend component and seasonal component can be
deterministic or stochastic.

e Sometimes, a cyclical component (recurring variation with
non-fixed period) is included in the systematic component.
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A multiplicative decomposition

e A common multiplicative decomposition is
Xt == TtStEt-

e This is equivalent to first converting X; to the log scale and then
perform an additive decomposition

|nXt:|n Tt—|—|n5t—i—|nEt

13 /29



Stationarity

Strict stationarity

e A time series {X;} is strictly stationary if its probabilistic behavior
is invariant to time shift.

e To be precise, for any k, for any time points ti, ..., tg, for any
X1,-..,Xk, and for any 9, we have

P(Xt1 S X1, 'ath S Xk) = P(th—l-(s S X1y.-- 7th+5 S Xk)
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e Strict stationarity implies that the mean function pu(t) = E(X:)
and the autocovariance function 7(t, t + h) = cov(X¢, X1n) do
not depend on t.

e Strict stationarity is often too much to ask for, and usually not
necessary for learning a model.
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Stationarity

e A time series {X;} is said to be (weakly) stationary if u(t) and
~(t, t + h) do not depend on t.

e The autocovariance and autocorrelation functions of a stationary
time series can be more compactly written as

v(h) =~(t, t+ h),
p(h) = p(t, t + h) = ~(h)/7(0).
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e Randomness in a stationary time series is sufficiently constrained
for finding out regularity in data.

e A stationary time series has a trivial system component (constant
mean).

e Stationary time series are used as an important building block for
the random component of more sophisticated models.
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Time Domain Models

White noise processes

e A white noise process {¢;} is a collection of uncorrelated random

variables with mean 0 and finite variance o2.

e This is often denoted as ¢; ~ WN(0, o2).

e The mean, autocovariance and autocorrelation functions are

pu(t) =0
o2, h=0,

t,t + h) = cov(es, =
¥ ) v(€t, €t1h) {07 h+0.

1, h=0,

p(t’t+h):{o h#0.

e White noise processes are thus stationary, and they serve as an
important building block for more sophisticated time series models.
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An example white noise series.
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Random Walk

e Consider the random walk X; = 3"!_; €;, where ¢; ~ WN(0, 2).

e The mean, autocovariance, and autocorrelation functions are

e {X;} is not stationary.
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Three random walk series from the same model.
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Moving average process

e {X;} is a moving average process of order 1, or MA(1), if
Xt =€ + Het_]_, where €t ~ WN(O,O’2).
e The mean, autocovariance, and autocorrelation functions are

=0,
o?(1+6%), h=0,
y(t, t+ h) = ¢ 020, h=4+1, |,
0, otherwise,
1, h=0,
p(t,t+h)=<0/(1+6°%), h==+l,
0, otherwise,

e MA(1) is stationary.
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Two MA(1) series from the same model.
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Autoregressive process

e {X;} is an autoregressive process of order 1, or AR(1), if
X; = ¢Xi_1 + €;, where ¢, ~ WN(0, 02).

e When AR(1) is stationary, the mean, autocovariance and
autocorrelation functions are

u(t) =0,

B Pl 2

y(t, t+ h) el
p(t, t+ h) = ¢lf
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Two AR(1) series from the same model.
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Linear processes

e A linear process {X:;} is a linear combination white noise variates
€¢, that is,

+oo
Xe =p+ Z yi€r_i,

i=—o00

where ¢; ~ WN(0, o2).

e The mean and covariance functions are
u(t) = p,

Yt t+h) =0 D bitish.

i=—o00
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1, =0,
e White noise is a linear process with ;. = 0 and ); = I .
0, i#0.

1, i=0,

e MA(1) is a linear process with =0, and ¥; =< 6, i=1,

0, otherwise.

. . ¢', i>0,
e AR(1) is a linear process with y =0, and ©; = o
0, otherwise.
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ARMA
e {X;} is ARMA(p, q) if it is stationary and

Xe=1Xe1+ ...+ GpXep + € + 01601 + Og€t—g,

where ¢, # 0, 0, # 0 and €, ~ WN(0, 02).

e p and q are called the autoregressive and the moving average
orders respectively.

e AR(1) = ARMA(1,0), and MA(1) = ARMA(0, 1).
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What You Need to Know

Time series exhibits correlation between measurements and serial
dependence.

Time series modelling requires some form of time invariance.

Time series decomposition is helpful for understanding the
underlying patterns.

Stationarity is a basic form of time invariance.

Time domain models.
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