
Lecture 18. Time Series

Nan Ye

School of Mathematics and Physics
University of Queensland

1 / 29



●●●
●●●●

●●●●
●●●●●●●●●●●●●●●

●
●●●●●

●
●

●●●
●

●
●

●

●
●●●

●●
●

●●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

Time

Q
ua

rt
er

ly
 E

ar
ni

ng
s 

pe
r 

S
ha

re

1960 1965 1970 1975 1980

0
5

10
15

Johnson & Johnson quarterly earnings per share (1960-I to 1984-IV)

2 / 29



●

●

●●

●●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

Time

G
lo

ba
l T

em
pe

ra
tu

re
 D

ev
ia

tio
ns

1880 1900 1920 1940 1960 1980 2000

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

Yearly average global temperature (1880-2009)

3 / 29



Time

sp
ee

ch

0 200 400 600 800 1000

0
10

00
20

00
30

00
40

00

Speech recording of the syllable aaa...hhh

4 / 29



Time

N
Y

S
E

 R
et

ur
ns

0 500 1000 1500 2000

−
0.

15
−

0.
05

0.
00

0.
05

Returns from NYSE from 2 Feb 1984 to 31 Dec 1991.

5 / 29



This Lecture

• Nature of time series data

• Time series modelling

• Time series decomposition

• Stationarity

• Time domain models
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Nature of Time Series Data

Characteristics

• A time series is often viewed as a collection of random variables
{Xt} indexed by time.

• In a time series, measurements at adjacent time points are usually
correlated.

• As compared to other types of correlated data, such as clustered or
longitudinal data, observations in a time series may explicitly
depend on previous observations and/or errors.
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Probabilistic description

• We can describe a time series using the distribution of the random
variables {Xt}.

• Frequently, we look at some summary statistics

Mean function 𝜇X (t) = E(Xt)

Autocovariance function 𝛾X (s, t) = cov(Xs ,Xt)

Autocorrelation function (ACF) 𝜌X (s, t) =
𝛾X (s, t)√︀

𝛾X (s, s)𝛾X (t, t)
.

• We often drop X from 𝜇X , 𝛾X and 𝜌X when there is no ambiguity.

8 / 29



Time Series Modelling

Chasing after stationarity

• The objective of time series modelling is to develop compact
representation of the time series, to facilitate tasks including
interpretation, prediction, control, hypothesis testing and
simulation.

• Some form of time invariance is required to find regularity in data
and extrapolate into future.

• Stationarity is a basic form of time invariance, and much of time
series modelling is about transforming times series so that the
transformed time series is stationary.
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Exploratory data analysis

• Plotting the time series should be the first step before any formal
modelling attempt.

• This is useful for identifying important features for choosing an
appropriate model.

• For example, use the plots to look for the trends, presence of
seasonal components or outliers.
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Modelling paradigms

• There are two main modelling paradigms.

• The time domain approach views a time series as the description of
the evolution of an entity, and focuses on capturing the
dependence of current value on history.

• The frequency domain approach views a time series as the
superposition (addition) of periodic variations.
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Time Series Decomposition

An additive decomposition

• A classical decomposition of a time series {Xt} is

Xt = Tt + St + Et ,

where Tt is the trend component, St is the seasonal component
(recurring variation with fixed period), Et is the error component.

• The trend component and seasonal component can be
deterministic or stochastic.

• Sometimes, a cyclical component (recurring variation with
non-fixed period) is included in the systematic component.
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A multiplicative decomposition

• A common multiplicative decomposition is

Xt = TtStEt .

• This is equivalent to first converting Xt to the log scale and then
perform an additive decomposition

lnXt = lnTt + ln St + lnEt

13 / 29



Stationarity

Strict stationarity

• A time series {Xt} is strictly stationary if its probabilistic behavior
is invariant to time shift.

• To be precise, for any k , for any time points t1, . . . , tk , for any
x1, . . . , xk , and for any 𝛿, we have

P(Xt1 ≤ x1, . . . ,Xtk ≤ xk) = P(Xt1+𝛿 ≤ x1, . . . ,Xtk+𝛿 ≤ xk)
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• Strict stationarity implies that the mean function 𝜇(t) = E(Xt)
and the autocovariance function 𝛾(t, t + h) = cov(Xt ,Xt+h) do
not depend on t.

• Strict stationarity is often too much to ask for, and usually not
necessary for learning a model.
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Stationarity

• A time series {Xt} is said to be (weakly) stationary if 𝜇(t) and
𝛾(t, t + h) do not depend on t.

• The autocovariance and autocorrelation functions of a stationary
time series can be more compactly written as

𝛾(h) = 𝛾(t, t + h),

𝜌(h) = 𝜌(t, t + h) = 𝛾(h)/𝛾(0).
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• Randomness in a stationary time series is sufficiently constrained
for finding out regularity in data.

• A stationary time series has a trivial system component (constant
mean).

• Stationary time series are used as an important building block for
the random component of more sophisticated models.
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Time Domain Models

White noise processes

• A white noise process {𝜖t} is a collection of uncorrelated random
variables with mean 0 and finite variance 𝜎2.

• This is often denoted as 𝜖t ∼ WN(0, 𝜎2).

• The mean, autocovariance and autocorrelation functions are

𝜇(t) = 0

𝛾(t, t + h) = cov(𝜖t , 𝜖t+h) =

{︃
𝜎2, h = 0,

0, h ̸= 0.

𝜌(t, t + h) =

{︃
1, h = 0,

0, h ̸= 0.

• White noise processes are thus stationary, and they serve as an
important building block for more sophisticated time series models.
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Random Walk

• Consider the random walk Xt =
∑︀t

i=1 𝜖i , where 𝜖t ∼ WN(0, 𝜎2).

• The mean, autocovariance, and autocorrelation functions are

𝜇(t) = 0,

𝛾(t, t + h) = t𝜎2,

𝜌(t, t + h) =
t√︀

t(t + h)
.

• {Xt} is not stationary.
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Moving average process

• {Xt} is a moving average process of order 1, or MA(1), if
Xt = 𝜖t + 𝜃𝜖t−1, where 𝜖t ∼ WN(0, 𝜎2).

• The mean, autocovariance, and autocorrelation functions are

𝜇(t) = 0,

𝛾(t, t + h) =

⎧⎪⎨⎪⎩
𝜎2(1 + 𝜃2), h = 0,

𝜎2𝜃, h = ±1,

0, otherwise,

,

𝜌(t, t + h) =

⎧⎪⎨⎪⎩
1, h = 0,

𝜃/(1 + 𝜃2), h = ±1,

0, otherwise,

.

• MA(1) is stationary.
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MA(1)   θ = 0.9
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Two MA(1) series from the same model.
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Autoregressive process

• {Xt} is an autoregressive process of order 1, or AR(1), if
Xt = 𝜑Xt−1 + 𝜖t , where 𝜖t ∼ WN(0, 𝜎2).

• When AR(1) is stationary, the mean, autocovariance and
autocorrelation functions are

𝜇(t) = 0,

𝛾(t, t + h) =
𝜑|h|𝜎2

1− 𝜑2
,

𝜌(t, t + h) = 𝜑|h|.
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Linear processes

• A linear process {Xt} is a linear combination white noise variates
𝜖t , that is,

Xt = 𝜇+
+∞∑︁

i=−∞
𝜓i𝜖t−i ,

where 𝜖t ∼ WN(0, 𝜎2).

• The mean and covariance functions are

𝜇(t) = 𝜇,

𝛾(t, t + h) = 𝜎2
∞∑︁

i=−∞
𝜓i𝜓i+h.
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• White noise is a linear process with 𝜇 = 0 and 𝜓i =

{︃
1, i = 0,

0, i ̸= 0.
.

• MA(1) is a linear process with 𝜇 = 0, and 𝜓i =

⎧⎪⎨⎪⎩
1, i = 0,

𝜃, i = 1,

0, otherwise.

.

• AR(1) is a linear process with 𝜇 = 0, and 𝜓i =

{︃
𝜑i , i ≥ 0,

0, otherwise.
.
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ARMA

• {Xt} is ARMA(p, q) if it is stationary and

Xt = 𝜑1Xt−1 + . . .+ 𝜑pXt−p + 𝜖t + 𝜃1𝜖t−1 + 𝜃q𝜖t−q,

where 𝜑p ̸= 0, 𝜃q ̸= 0 and 𝜖t ∼ WN(0, 𝜎2).

• p and q are called the autoregressive and the moving average
orders respectively.

• AR(1) = ARMA(1, 0), and MA(1) = ARMA(0, 1).
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What You Need to Know

• Time series exhibits correlation between measurements and serial
dependence.

• Time series modelling requires some form of time invariance.

• Time series decomposition is helpful for understanding the
underlying patterns.

• Stationarity is a basic form of time invariance.

• Time domain models.
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